101 research outputs found

    Measurement and correlation of jet fuel viscosities at low temperatures

    Get PDF
    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations

    Modeling the Worker

    Full text link
    Modeling the Worke

    Impact of changes in barometric pressure on landfill methane emission

    Get PDF
    Citation: Xu, Liukang, Xiaomao Lin, Jim Amen, Karla Welding, and Dayle McDermitt. “Impact of Changes in Barometric Pressure on Landfill Methane Emission.” Global Biogeochemical Cycles 28, no. 7 (2014): 679–95. https://doi.org/10.1002/2013GB004571.Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska, USA. Our results show that landfill methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, a phenomenon called barometric pumping. There was up to a 35-fold variation in day-to-day methane emissions due to changes in barometric pressure. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at our landfill site. From our results, it is clear that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions from landfills based on such measurements could yield uncertainties, ranging from 28.8% underestimation to 32.3% overestimation. Our results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may apply to the study of methane emissions from wetlands, peatlands, lakes, and other environmental contexts where emissions are from porous media or ebullition. Other implications from the present study for hazard gas monitoring programs are also discussed

    Graph Transformation for Domain-Specific Discrete Event Time Simulation

    Get PDF
    Proceedings of: Fifth International Conference on Graph Transformation (ICGT 2010). Enschede, The Netherlands, September 27–October 2, 2010.Graph transformation is being increasingly used to express the semantics of domain specific visual languages since its graphical nature makes rules intuitive. However, many application domains require an explicit handling of time in order to represent accurately the behaviour of the real system and to obtain useful simulation metrics. Inspired by the vast knowledge and experience accumulated by the discrete event simulation community, we propose a novel way of adding explicit time to graph transformation rules. In particular, we take the event scheduling discrete simulation world view and incorporate to the rules the ability of scheduling the occurrence of other rules in the future. Hence, our work combines standard, efficient techniques for discrete event simulation (based on the handling of a future event set) and the intuitive, visual nature of graph transformation. Moreover, we show how our formalism can be used to give semantics to other timed approaches.Work partially sponsored by the Spanish Ministry of Science and Innovation, under project “METEORIC” (TIN2008-02081) and mobility grants JC2009-00015 and PR2009-0019, as well as by the R&D programme of the Community of Madrid, project “e-Madrid” (S2009/TIC-1650).Publicad

    Improving the Efficiency of Physical Examination Services

    Get PDF
    The objective of our project was to improve the efficiency of the physical examination screening service of a large hospital system. We began with a detailed simulation model to explore the relationships between four performance measures and three decision factors. We then attempted to identify the optimal physician inquiry starting time by solving a goal-programming problem, where the objective function includes multiple goals. One of our simulation results shows that the proposed optimal physician inquiry starting time decreased patient wait times by 50% without increasing overall physician utilization

    Testing for Initialization Bias in the Mean of a Simulation Output Series

    No full text

    Visualizing Infinitesimal Perturbation Analysis Estimators

    Full text link
    Visualizing Infinitesimal Perturbation Analysis Estimator

    Initialization Effects in Computer Simulation Experiments

    Full text link
    Initialization Effects in Computer Simulation Experiment

    Gradient Estimation of Stochastic Dynamical System Responses in the Frequent Domain

    Full text link
    Gradient Estimation of Stochastic Dynamical System Responses in the Frequent Domai

    Water-shedding ability of waterfowl and the brachistochrone problem

    No full text
    corecore